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Abstract 

A material undergoing sol-gel transition evolves from the pre-gel (sol) state to the 

post-gel state, through the critical gel state. It is well-known that critical gels exhibit power-

law rheology. The faster decay of the relaxation modulus in the pre-gel state can be 

empirically described by modifying this power-law decay with a stretched exponential factor. 

A phenomenological analytical expression for the relaxation modulus in the post-gel state is 

proposed by invoking symmetry associated with the evolution of relaxation time on either 

side of the critical gel state, and by accounting for natural constraints. This expression, which 

depends on the extent of crosslinking, can be suitably transformed to obtain analytical 

expressions for the dynamic moduli and the continuous relaxation time spectrum. Thus, the 

proposed model facilitates a comprehensive description of viscoelastic evolution from the 

pre-gel to the post-gel states. It is validated by carrying out experiments on a model colloidal 

gel-forming system, and by considering other diverse gel-forming systems studied in the 

literature. After calibrating the parameters of the phenomenological model, it is found to be in 

excellent agreement with experimental data. Such a well-calibrated phenomenological model 

can be used to determine any linear viscoelastic response over a wide range of frequencies, 

and extents of crosslinking encompassing the entire sol-gel transition.  
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1. Introduction 

 Many colloidal and polymeric systems, subjected to certain stimuli (thermal, 

chemical, light, etc.) or otherwise, undergo spontaneous liquid to soft solid transition as a 

function of time. Among such transitions, an important category is the sol-gel transition.1 

Typical examples of such transition include crosslinking reactions in thermosetting polymers, 

adhesives, commercial gel-forming systems such as Carrageenan, colloidal gel-forming 

systems such as clay, Ludox®, food ingredients such as agar agar gel, etc.2-11 During such a 

transition, gel-forming units (such as colloidal particles, polymeric precursors, etc.) form 

physical (van der Waals, electrostatic, depletion, etc.) or covalent bonds with each other. 

Accordingly, the cluster grows and in due course forms a space spanning percolated network 

that eventually undergoes densification. In the literature, much emphasis has been given to 

the percolated space spanning network state that corresponds to a fractal structure, which is 

also known as the critical gel state.12-14 This is primarily because of the uniqueness associated 

with this state, wherein rheological response functions, for instance, dynamic moduli, 

relaxation modulus and creep compliance demonstrate power-law dependency on their 

respective independent variables, frequency or time.15, 16 Comparatively less attention has 

been given to understanding how rheological properties evolve in the pre-gel and the post-gel 

state. In this paper, we analyze this topic theoretically and experimentally by considering 

different kinds of gel-forming materials.  

 A gel-forming material, in its sol state shows rheological properties of a viscous liquid 

wherein elastic (G ) and viscous (G ) moduli respectively show a quadratic and linear 

dependence on angular frequency ( ) with (G<<G ). As gelation progresses, the cluster 

grows and the frequency dependence of both the moduli gets weaker with that of G  getting 

weaker at a faster rate. At a certain point, the network percolates the space such that both the 

moduli show identical power-law dependence on frequency given by:17 

( ) ( )
cot / 2

2 ( )sin / 2
nS

G G n
n n

 


 = =


,       (1) 

where n  is the power-law exponent with 0 1n  , S  the gel strength and   is the Euler 

Gamma function. The identical power-law scaling of the dynamic moduli on frequency has 

also been confirmed by a microscopic framework for an attractive colloidal system.18 This 

unique state has been termed as the critical gel state, where the percolated network is the 

weakest and has a fractal structure. Interestingly, the power-law dependence of the dynamic 
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moduli on the angular frequency with an exponent of n  is reflected in the evolution of all the 

other linear viscoelastic functions; the relaxation modulus and spectrum show inverse power-

law dependence on time, while creep compliance shows a power-law increase with time, all 

with power-law exponent of n .14, 19 As gelation progresses the dynamic moduli continue to 

get weaker with angular frequency but at a slower rate. During this process, the gel 

consolidates and becomes denser. In colloidal systems where spontaneous time dependent 

gelation process occurs, such as in clay systems, gel consolidation continues and the systems 

show out-of-equilibrium soft glassy dynamics.20  

 While the rheological response functions have been observed to demonstrate power-

law rheology at the critical gel state, important observations have also been made regarding 

how other rheological functions vary as the critical state is approached from the pre-gel (sol) 

as well as the post-gel direction.21 Particularly, it has been observed that viscosity diverges as 

the critical gel state is approached. In contrast, the equilibrium modulus (associated with zero 

frequency), which becomes finite beyond the critical gel state, grows in the post gel state. On 

the other hand, the relaxation time has been observed to diverge as the critical gel state is 

approached from either side, the pre-gel as well as the post-gel. These variables show power-

law dependence on the distance to the critical gel point measured in terms of the degree of 

crosslinking.21 The corresponding power-law exponents are related to each other in such a 

fashion that knowledge of n  and any other exponent leads to the estimation of all the 

remaining exponents.19, 21 

Although the evolution of the viscosity, equilibrium modulus, and relaxation time is 

well-characterized by the scaling relations, knowledge of how the relaxation modulus, creep 

compliance and relaxation time spectrum evolve in the pre- and post-gel states is vital in 

order to have a better understanding of the rheological aspects of the gelation process. In an 

early attempt, Winter and coworkers22 obtained the discrete relaxation time spectra by fitting 

a multimode Maxwell model to the dynamic moduli data at different extents of crosslinking. 

They considered identical exponential decay of relaxation modulus in the pre-gel and post-gel 

states except for the equilibrium modulus being non-zero in the post-gel state. However, this 

methodology depends on the number of modes, and the frequency window of the dynamic 

moduli data. In an important subsequent work, Scanlan and Winter23 used critical exponents 

associated with the scaling laws and proposed a continuous function for the relaxation 

modulus in the pre-gel state. They modified the power-law decay of the relaxation modulus 

associated with the critical gel state by incorporating a stretched exponential function that 
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depends on the extent of crosslinking in the pre-gel state. This proposed functional form 

shows remarkable agreement with the experimental data of relaxation modulus in the pre-gel 

state. Scanlan and Winter23 further speculated the possibility of extending the stretched 

exponential equation they proposed for the pre-gel state to the post-gel state by changing the 

argument of the exponential term from negative to positive and by incorporating the 

equilibrium modulus. Although such an approach could describe the transient response very 

close to the critical gel point, it could not describe their experimental observations at greater 

extents of crosslinking for a polydimethylsiloxane gel.23 Furthermore, a stretched exponential 

function with a positive argument in the post-gel state results in the divergence of relaxation 

modulus at large times. Therefore, to the best of our knowledge, an appropriate form of the 

relaxation modulus in the post-gel state has not yet been established. 

In this work, taking a cue from Winter and coworker’s methodology,23 we propose an 

analytical form for the relaxation modulus in the post-gel state. We also propose a systematic 

method for obtaining all the viscoelastic functions, and the relaxation time spectrum at 

different extents of crosslinking. Building on previous work, this leads us to a comprehensive 

phenomenological model that applies seamlessly from the pre-gel, through the critical, to the 

post-gel states. We validate this comprehensive model for distinctly diverse physically 

crosslinking gel systems, by carrying out new experiments as well as using the data from the 

literature.  

 

2. Material, Sample Preparation and Experimental Protocol 

We prepare an aqueous dispersion of a synthetic hectorite clay mineral, LAPONITE 

XLG®, a registered trademark of BYK Additives. The individual particles of LAPONITE 

XLG® are around 30 nm in diameter and 1 nm in thickness. Detailed information about the 

LAPONITE XLG® clay mineral can be found elsewhere.24 Henceforth, we refer to this 

system as just clay. In this work, we prepare 3 weight % clay dispersion with 3 mM NaCl 

dispersion. The oven-dried clay (120°C for 4 h) is added to ultrapure water (Millipore, 

resistivity of 18.2 MΩ cm) having a predetermined quantity of salt. The solution is stirred 

continuously for a duration of 30 minutes using the IKA Ultra Turrax drive leading to a clear 

homogeneous dispersion. The freshly prepared samples are loaded in a shear cell to perform 

experiments. The rheological measurements are conducted using a TA Instruments DHR-3 

rheometer with a sandblasted concentric cylinder geometry (cup diameter 30.38 mm and gap 

of 1.17 mm). We subject the sample to cyclic frequency sweep over a range of 0.5 – 25 rad/s 
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and at a constant oscillatory stress of 0.1 Pa within the linear viscoelastic limit. A single 

frequency sweep takes 100 s to complete, which is significantly less than the gelation time of 

the colloidal clay dispersion. We also estimate the mutation numbers, which have been 

observed to be always within the suggested limit ( ( )( )2 / /
mu

N G G t   =   <0.1 and 

( )( )2 / /
mu mu

N G G t N    =    ). In all the experiments, the temperature is maintained at 

10°C using the Peltier plate assembly. A thin layer of silicone oil is added on the free surface 

of the sample and a solvent trap is used to prevent the evaporation losses during the 

measurements. 

 

3. Experimental Results 

 

Figure 1. Evolution of tan  is plotted as a function of time at different frequencies over a 

range of 0.5 – 25 rad/s during the sol-gel transition in an aqueous dispersion of synthetic 

hectorite clay at 10°C. The dashed line indicates the direction of increasing angular 

frequency. The solid arrow denotes the point of independence of iso-frequency tan  curves. 

The inset shows the variation of G  and G  as a function of angular frequency at different 

extents of gelation. The value on the vertical axis has been shifted by a factor of A  for 

clarity. The solid blue line in the inset denotes the fit of Eq. 1. 
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Figure 1 describes the result of a cyclic frequency sweep experiment on the aqueous 

dispersion of clay at 10°C during the sol-gel transition. The dependence of elastic (G ) and 

viscous (G ) moduli on the angular frequency at different extents of gelation are shown in 

the inset of Figure 1. In the early stages of the gelation, the moduli exhibit liquid-like 

behavior, characterized by the presence of the terminal region. This indicates that the 

colloidal dispersion is in the sol state at early times. As time progresses, the moduli increase 

in magnitude but become less sensitive to frequency. Furthermore, G  increases faster than 

G . Eventually, at a certain time, G  and G  follow an identical power-law dependence on 

frequency, ~ ~ n
G G   . The solid line represents the power-law dependence given by Eq. 

(1) with S  = 3.8 nPas  and n = 0.34. With further increase in time, the dependence of moduli 

on frequency continues to weaken. The corresponding time evolution of loss tangent ( tan ) 

for the aqueous colloidal dispersion is plotted in Figure 1. The dashed line represents the 

direction of increasing  . As expected, tan  decreases with increasing frequency in the sol 

state. Very interestingly, the iso-frequency tan  curves intersect at a point and become 

independent of the applied frequency. The time corresponding to tan  becoming frequency-

independent is known as the critical gelation time ( g
t ). At this point, the sample forms the 

weakest space spanning percolated fractal network. The corresponding value of the critical 

exponent ( n ) can be computed from the value of tan  at the critical point using the relation: 

( )tan tan / 2n = . Expectedly, the computed value of n  is equal to the power-law exponent 

of moduli on frequency at the critical point. Such an equivalence validates the presence of the 

fractal network structure at the critical point according to the Winter criterion. For times 

greater than g
t , the dependence of tan  on   reverses and tan  increases with  , which 

is a characteristic signature of the post-gel state. Therefore, Figure 1 clearly establishes that 

the colloidal dispersion undergoes spontaneous sol-gel transition at 10°C. 
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Figure 2. Evolution of (a) zero-shear viscosity ( 0 ), equilibrium modulus (
e

G ) and (b) 

longest relaxation time in the pre-gel state ( max,S ) and in the post-gel state ( max,G ) are plotted 

as functions of time for colloidal dispersion of hectorite clay undergoing sol-gel transition at 

10°C. 
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magnitude increased with distance from the critical point with an exponent  z  = 1.5. An 

alternative framework traces the emergence of elastic modulus to nonaffine atomic 

displacements in disordered lattices that characterize amorphous solids.33 With this approach, 

a value of  z  = 1 was analytically obtained using an approximate mean-field theory. 

Subsequently, a connection between the two frameworks was discovered, which integrated 

the ideas of rigidity percolation and nonaffine displacement.34 Differences between the values 

of  z  obtained from the two approaches were attributed to non-mean-field correlations near 

the rigidity transition. To summarize, the scaling exponents are not universal constant as 

evident from experiments and theoretical studies, although they are interrelated with each 

other.19 

Another important aspect of the experimental computed critical exponents is that the 

evolution of relaxation time in the neighbourhood of the critical gel state has been observed 

to be symmetric leading to: 
S

 =
G

v . In addition to this work, numerous other studies on 

different physically and chemically crosslinking systems also suggest 
S

 =
G

v .19, 35, 36 

Interestingly the inverse of these exponent: 1 1
S G  − −= =  is the dynamic critical exponent, 

which has been experimentally observed to take values in a narrow range of 0.17 – 0.3.19, 37 

Furthermore, the very fact that 
S

 =
G

v , leads to: ( )n z z s= + .21 This theoretical analysis and 

experimental observation appear to be independent of the nature of the gelation (physical or 

chemical), gel-forming system (polymeric or colloidal), concentration, and experimental 

conditions like temperature environment.19 Importantly, these scaling exponents show an 

excellent agreement with the hyperscaling relations given by Eqns. (6) and (7) including 
S

 =

G
v , which implies ( )n z z s= + . For the colloidal dispersion explored in the present work, the 

computed value of   = 0.19 lies within the prescribed range. Importantly such an 

equivalence corroborates that g
t t−  is related to the distance from the critical gel state 

c
p p−  as:  

~
g c

t t p p− − .          (8) 

The above correspondence has also been verified for many spontaneous (time-dependent) 

physical as well as chemical gel-forming systems.23 In general, it has been observed that if R  

is the parameter that controls the extent of gelation, such that 
c

R  is associated with the 
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represented by a solid line in the inset of Figure 3. Remarkably, the observed power-law 

exponent is identical to the theoretical value of 1n − . In the post-gel state, the value of *  

increases further and exhibits an inverse   dependence in the limit of low  . Such a 

dependence is suggestive of a solid-like response. Using the computed values of 0 , 
e

G , 

max,S  and max,G , we obtain a unique superposition of *  using the protocol suggested by 

Winter.21 In Figure 3, we plot *  normalized by a reference viscosity ( )ref  as a function of 

max
 . In the pre-gel region, ref  is taken as 0  and 

max
  is taken as max,S , while in the post-

gel region, max,e G
G   serves as ref  and max,G  as 

max
 . It can be seen that the viscosity data 

collapse into two exclusive curves for the pre-gel and the post-gel states. It is important to 

note that the shift factors leading to the superposition are not arbitrary, instead, they are 

uniquely determined by the parameters 0 , 
e

G , max,S  and max,G  described in Figure 2. 

In the pre-gel state, the normalized *  achieves a plateau in the limit of low  , 

which is followed by a frequency-dependent decrease. On the other hand, the nature of the 

curve in the post-gel state is very different from the pre-gel state. It does not plateau at low 

frequency; instead, the normalized viscosity exhibits a power-law decrease with a slope of −1 

as shown by the dashed line. Interestingly, the behavior of the pre-gel and post-gel states at 

high-frequency approaches the power-law behavior of the critical gel state. 

The unique superposition of *  in the pre-gel and post-gel states leads to remarkable 

consequences. Similar to time-temperature superposition in polymeric systems, the 

superposition of *  using these scaling laws expands the window of experimentally 

accessible timescales (4 – 6 decades in Figure 3, instead of approximately two decades in the 

inset). It also implies that the shape of the relaxation time spectrum is preserved (separately) 

in the pre-gel and the post-gel states. Taken together, there is a strong incentive to develop a 

comprehensive linear viscoelastic model that describes the sol-gel transition. Such a model, 

adequately calibrated with superposed experimental data, would be able to describe the 

rheological response from arbitrarily small to large timescales. As a corollary, the 

hyperscaling laws generalize the ability to completely describe the rheology at a particular 

extent of gelation, to arbitrary extents of gelation. 
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4. Development of the Phenomenological Model 

The oscillatory experiment results lead to the estimation of the scaling exponents, 

which suggests a simple power-law evolution for the viscoelastic parameters in the pre-gel 

and the post-gel state. Furthermore, we expect these scaling exponents to characterize other 

dynamic viscoelastic properties as well. At the critical gel state, the stress relaxation modulus 

( )G t  of a critical gel exhibits a power-law decay with respect to time given by:38 

( ) n
G t St

−= .           (9) 

The above equation can be obtained by taking an inverse Fourier transform of the dynamic 

moduli given in Eq. (1). Moreover, experimentally, colloidal and polymeric gel-forming 

systems routinely show such behavior at the critical point.38, 39 In an attempt to describe the 

evolution of the relaxation modulus at all extents of crosslinking for a pre-gel state, Scanlan 

and Winter23 proposed the following generic form: 

( ) ( )
max,

, ,  
c

S

t
G t p G t p f


 

=  
  

,        (10) 

where ( ),
c

G t p  is the evolution of the relaxation modulus at the critical gel state and 

max,S

t
f


 
 
  

 is the cut-off function. On substituting the dependence of G  given by Eq. (9) and 

the divergence of max,S  given by Eq. (4) in the above equation, we get:23 

( ) 1/
,  n

S c

t
G t p St f

C p p


−
−

 
=  

 − 
,       (11) 

where SC  is the constant of proportionality associated with the scaling equation of max,S . 

While the form of the cut-off function needs to be determined experimentally, a stretched 

exponential function has been observed to describe the behavior quite well in the pre-gel 

state.39-41 On adopting a stretched exponential form for the cut-off function given by 

( ) ( )f x exp x
= − , ( ),G t p  can be expressed as:23 

( ) 1/
, expn

S c

t
G t p St

C p p




−

−

  
 = − 

  −  

.      (12) 
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Particularly, the parameters S  and n  can be computed using Eq. (1), while   describes the 

evolution of the relaxation timescale in the vicinity of the critical gel state and can be 

estimated from Eqns. (4) and/or (5) with 1 1
S G  − −= = .  

Out of the other three parameters, 
S

  is associated with the sol or pre-gel state, while 

 
e

G and 
G

  are associated with the post-gel state. Unlike S , n  and  , these remaining 

parameters (
S

 , 
G

  and  
e

G ) are not constant, but depend on the extent of gelation. At a 

given extent of crosslinking 
e

G  can be obtained experimentally as demonstrated in Figure 2. 

Furthermore, 
S

  and 
G

  are natural gelation variables that are proportional to the distance 

from the critical gel state in terms of degree of crosslinking ( )c
p p− . They can be extracted 

by selecting a reference value of 
c

p p−  in the pre-gel and post-gel state, and calibrating the 

phenomenological model to superposed experimental observations of any linear viscoelastic 

response function (dynamic moduli, complex viscosity, relaxation modulus, creep 

compliance, etc.) This reference value of 
c

p p−  serves the same role as the reference 

temperature in time-temperature superposition. Once 
S

  and 
G

  are determined for the 

“reference state”, they can be used to obtain the response at any other value of 
c

p p−  using 

the hyperscaling laws. 

For the experimental system reported in the previous section, the degree of 

crosslinking is represented in terms of time such that ~
c g

p p t t− − . Thus, the parameters 

S
  and 

G
  are proportional to g

t t−  as /
S g S

t t C
 = −  and /

G g G
t t C

 = − , wherein the 

constants 
S

C  and 
G

C  are unknown. Thus, when we calibrate the model given by Eqns. (16) 

to (18) with experimental data at a particular reference state, we effectively determine the 

constants 
S

C  and 
G

C . 

After selecting a reference state, the value of  
e

G  is predetermined using the scaling 

relation and the only fitting parameters are 
S

  and 
G

 . The method that we adopt to 

determine them and hence calibrate the phenomenological model is mentioned below. We 

guess initial values of 
S

  and 
G

 , and use the model given by Eqns. (16) to (18) to obtain 
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Due to the linearity of Eq. (18) and Eq. (19), the spectra can also be visualized as a sum of 

contributions given by: 

( ) ( )
( )

0

 
im

n iG

i

S
H

n i

 


− −

=

=
 − ,        (25) 

It should be noted that each of the terms in the sum of ( )H   given by Eq. (25) corresponds 

to the respective component in the sum associated with ( )G t  given by Eq. (24). Extending 

the same concept, the dynamic moduli G  and G  can also be obtained as a sum of 1m+  

components given by: 

( ) ( )0

cosec
2 2

inm

i i
e

i i

S n
G G

n

 
=

 = +   



  and       (26) 

( ) ( )0

sec
2 2

inm

i i

i i

S n
G

n

 
=

 =   



 .       (27) 

Finally, with the knowledge of dynamic moduli, the complex viscosity *  can be estimated 

analytically from Eq. (22) for the post-gel state. To summarize, given a set of six parameters, 

we can estimate the complex viscosity *  corresponding to the phenomenological model 

numerically for the pre-gel state, and analytically for the post-gel state. 

 

5. Results and Discussion 

Before we can fit the superposed experimental data shown in Figure 3, we have to 

select reference “extent of gelation” for the pre-gel and post-gel states. We use the g
t t−  

corresponding to max, 1
S

 =  s as the reference value for the pre-gel state. We use the same 

value of g
t t−  = 7920 s as the reference for the post-gel state. However, the choice of what 

reference state to use in the pre-gel and post-gel states is arbitrary. With the knowledge of 

g
t t−  and the scaling relations given by Eqns. (2) to (5) expressed in terms of time, max,G , 

0  and 
e

G  used to normalize *  are obtained as 0.18 s, 5.47 Pa.s and 9.14 Pa respectively. 

The unknown parameters 
S

  and 
G

  are obtained by fitting the normalized *  obtained 
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from the phenomenological model to the experimental data. In practice, we additionally allow 

some of the known parameters ( , S  and n ) to vary slightly (within 10% of their originally 

determined values) and minimize the absolute value (‘soft_l1’ loss function) of the difference 

between the experimental and theoretical curves using the non-linear least-squares routine 

(least_squares) from the optimization package in SciPy.46 

The normalized *  obtained from fitting or calibrating of the model are plotted as 

solid lines in Figure 3. It can be seen that *  obtained from G  given by Eqns. (16) to (18) 

describes the experimental data remarkably well. Such an agreement provides initial 

validation for the functional form of G  conjectured in Eqns. (16) to (18) for the pre-gel and 

post-gel states. This is particularly remarkable for the post-gel state, where the form of the 

relaxation modulus was proposed based solely on symmetry and physical constraints. 

Furthermore, such a model-based description of complex viscosity has important 

consequences: (i) the model prediction of complex viscosity is no longer limited by the 

frequency range of the observations, and (ii) it allows extrapolation to frequencies that are 

otherwise experimentally inaccessible. The low-frequency asymptote, which is otherwise not 

practical to explore via rheometry, is clearly evident. The high-frequency asymptote can also 

be seen approaching the power-law behavior in the pre-gel and post-gel states.  
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Figure 4. The evolution of relaxation modulus (G ) in the pre-gel, critical gel and post-gel 

state is plotted as a function of time. The inset shows the same data for the pre-gel and post-

gel state on a dimensionless scale. 

 

Table 1. Model parameters used to define ( )G t  for the colloidal dispersion undergoing sol-

gel transition at 10°C. 

Model Parameter Value Source 

 n  0.35 Figure 1, Eq.1 
 S  3.8 Pa.sn  Figure 1, Eq.1 

   0.19 Figure 2, Eq. 4, 5 

 
S

  2.1 [1 s
 ] Fit  

 
G

  0.2 [1 s
 ] Fit 

 
e

G  9.14 Pa Figure 2, Eq. 3 

 

After fitting the model to the complex viscosity, all the parameters of the model are 

established. These are listed in Table 1. Using these parameters, we now plot the evolution of 

relaxation modulus given by Eqns. (10) - (12) in the pre-gel, critical gel and post-gel states in 

Figure 4. As expected, G  associated with the pre-gel state corresponding to a particular 

g
t t−  decreases exponentially and relaxes to 0. The zero-shear viscosity obtained by 

integrating ( )G t  is equal to 0  = 4.65 Pa.s obtained experimentally for the pre-gel reference 

state. This is the same 0  used to normalize the complex viscosity for this g
t t−  in Figure 3. 

At the point of the critical gel transition, G  follows a power-law decay with an exponent 

given by n . This suggests that stress can ideally relax to zero at infinite time. Beyond the gel 

point as the crosslinking increases, G  grows and the relaxation times become noticeably 

longer than the pre-gel state. However, the decay of G  becomes progressively sluggish for 

the post-gel state and approaches a plateau at very long times in the log-log plot. The finite 

value of relaxation modulus at very large times is the terminal plateau modulus (equilibrium 

modulus) of the gel associated with the post-gel reference state. The value of G  can be 

nondimensionalized using max
n

S −  in the pre-gel and the post-gel state and is plotted as a 

function of nondimensionalized time ( maxt  ) in the inset of Figure 4. 
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Such dependence of relaxation modulus in the pre-gel, critical gel and post-gel states 

has been observed for various polymeric crosslinking materials.39, 47 With the established 

form of G  in the pre-gel and post-gel state given by Eq. (10) to (12), it is now possible to 

predict the evolution of G  at any extent during the crosslinking process by simply scaling the 

prefactors 
S

  and 
G

  of the exponential term. For early stages of crosslinking, the material 

relaxes rapidly, which is beyond the detection limit of the rheometer. However, with the 

model proposed in this work, it is now possible to predict the evolution of relaxation modulus 

for early stages of crosslinking. Furthermore, one can get an entire spectrum of the evolution 

of relaxation modulus in the pre-gel and post-gel states without conducting extensive 

experiments.  

 

Figure 5. The relaxation spectra ( H ) for the colloidal dispersion undergoing sol-gel 

transition. The inset shows the same data for the pre-gel and post-gel state on a dimensionless 

scale. 

 

With the computation of all the model parameters of the proposed model for 

relaxation modulus Eq. (13), we extract the relaxation time spectrum. For the pre-gel state, 

we obtain H  using the pyReSpect-time program48 while for the post-gel state, we obtain H  

analytically as described previously. The computed relaxation time spectrum is plotted in 

Figure 5 and the inset shows the evolution in a nondimensionalized scale. For the pre-gel 
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state, it can be seen that the smaller relaxation modes are heavily populated while the larger 

relaxation modes are scarce. This suggests that the relaxation time of the pre-gel state is very 

short since the precursor units of crosslinking have not yet participated in the cluster 

formation. At gel point, H  follows a power-law dependence with the decay rate dictated by 

n . Such dependence suggests the same behavior in the relaxation of stress at all scales of 

observation.14 The negative value of the power-law exponent suggests that the fast relaxation 

modes dominate the gel structure and the slow modes are fewer in number. Interestingly, the 

power-law spectrum at the critical gel state has been found to be obeyed by a wide range of 

physical and chemical gels.5, 49, 50 Beyond the gel point, the population of the longer 

relaxation times increase as the smaller unattached clusters participate in the percolated 

network. It is important to note that while the longest relaxation timescale associated with the 

relaxable components diverge symmetrically in the vicinity of the critical point, the 

relaxation spectrum of the post-gel state as a whole is not simply a reflection of the pre-gel 

state. The relaxation is distinctively different in the pre-gel and post-gel. This is an important 

result which for the first time reports the relaxation time spectrum of a gel-forming system at 

various stages of gelation. 

 

Figure 6. Evolution of creep compliance ( J ) as a function of time for the colloidal 

dispersion. The inset shows the same data for the pre-gel and post-gel state on a 

dimensionless scale. 
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6. Wide Applicability of the Model 

 

Figure 7. Normalized complex viscosity *  is plotted as a function of max  for (a) 

colloidal dispersion of hectorite clay at 30°C and (b) PVOH solution. The experimental 

datapoints are taken from Ref.19 and shown by symbols while the model fits are shown by 

solid lines. 
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The proposed model is observed to be in excellent agreement with the experimental 

data reported for a spontaneously crosslinking colloidal dispersion at 10°C. However, since 

the model for G  is phenomenological, it is worthwhile to test its generalizability. Thus, the 

question that animates this section is, “does the proposed model for G  describe the 

viscoelastic functions for any gel-forming system irrespective of nature of gelation, 

concentration, or temperature?” In an attempt to address this question, we test this model on a 

variety of gel-forming systems. 

To begin with, it is well-known that the kinetics of gel transition for the colloidal 

dispersion considered here are highly dependent on temperature. On increasing the 

temperature from 10°C to 30°C, the time needed to achieve critical gel transition reduces 

significantly. The detailed effect of temperature on the kinetics of gelation can be found 

elsewhere.19, 37, 56 Therefore, we test our model on the colloidal dispersion undergoing gel 

transition at 30°C. We further extend the applicability of the proposed model to a thermo-

responsive polymer solution of poly(vinyl alcohol) (PVOH) undergoing sol-gel transition 

upon cooling. The oscillatory data of the colloidal dispersion at 30°C and the polymer 

solution is reported by Suman and Joshi.19 The superposed *  is shown by symbols for the 

colloidal dispersion and the polymer solution in Figure 7 (a) and (b). The estimated values of 

S , n , 0 , 
e

G , max,S  and max,G  are already reported in the previous publication.19 With the 

knowledge of the model parameters from the oscillatory data, we compute *  using the 

methodology previously outlined in this work. The reference state is selected in an identical 

fashion as discussed previously for the colloidal dispersion at 10°C. Fitting parameters for all 

the systems considered in this work are tabulated in Appendix B. The solid lines in Figure 7 

(a) and (b) represent the model fits. Remarkably, it can be seen that the proposed model 

shows excellent agreement with both sets of experimental data. It is important to note that for 

the post-gel data, the value of m  = floor( n  ) varies from 1 for the colloidal dispersion to 3 

for the PVOH system. This highlights the applicability of the proposed model to any gel-

forming system with critical gel state having either elastically dominant (with n  = 0.29 for 

colloidal dispersion) or viscous dominant (with n  = 0.79 for polymer solution) 

characteristics. Very importantly, the colloidal dispersion undergoes spontaneous gelation 

while the polymer solution undergoes physical gelation upon cooling. Consequently, the 

relative distance to gelation, analogous to the extent of crosslinking, is expressed in terms of 

time for the colloidal dispersion ( ~
c g

p p t t− − ) and temperature for the PVOH solution (
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~
c c

p p T T− − , where 
c

T  is the temperature at which the critical gel transition occurs in 

PVOH solution). The rationale behind such equivalence is discussed by Suman and Joshi.19 It 

is, therefore, important to note that irrespective of the gelation variable, the model fits the 

experimental data exceedingly well for the colloidal dispersion and the polymer solution in 

Figure 7. This agreement provides further confidence in the validity of the proposed model 

and methodology for any gel-forming material irrespective of temperature and nature of 

gelation. 
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Figure 8. Superposed creep compliance ( J ) for (a) peptide and (b) polyacrylamide gels are 

plotted as a function of lag time (
D

t ). The parameters a  and b  represent the shift factors 

used for obtaining the superposition. The symbols are experimental data (square represents 

pre-gel and triangles represent post-gel state) taken from Ref.35 and the lines represent fits to 

the proposed model.  

 

The model parameters of Eqns. (16) to (18) characterize an approach to and from the 

critical gel state. These parameters can also be obtained through mean squared displacement 

(MSD) data for a gel-forming system at different extents of gelation. An example of such 

detailed MSD data is reported by Furst and coworkers35 for peptide and acrylamide gels. The 

sol-gel transition in peptide solution proceeds with time while gelation in acrylamide gel 

occurs with an increase in the crosslinker (bis-acrylamide) concentration. Therefore, the 

extent of gelation is expressed in terms of time for peptide gel ( ~
c g

p p t t− − ) and 

concentration of the crosslinker ( c ) for acrylamide gel ( ~
c g

p p c c− −  where g
c  is the 

critical concentration of the crosslinker at the point of critical sol-gel transition). Using the 

MSD data, we obtain the creep compliance using the generalized Stokes-Einstein relation. 

The computed value of J  from the experimental data is plotted as symbols in Figure 8. 

Furthermore, the parameters n  and S  are obtained through the MSD data at the critical gel 

state. The value of   is obtained from the power-law behavior of the shift factors used for 

superposition. Given values (or guesses) for all the six model parameters, we can numerically 

obtain J  from G  using the method described in Appendix A. The values of the unknown 

parameters (
S

  and 
G

 ) are obtained by fitting the theoretical J  to the experimental data. It 

is important to note that the fitting parameters 
S

  and 
G

  are proportional to g
t t−  in a 

similar way as expressed for the colloidal dispersion undergoing spontaneous gelation. 

However, for the acrylamide gel, the parameters are defined as /
S g S

c c C
 = −  and 

/
G g G

c c C
 = − . The best-fit creep compliance parameters are shown in Table 2 in 

Appendix B. The corresponding curves are shown by solid lines in Figure 8.  

The creep compliances obtained from the model show excellent agreement with the 

experimental data. The value of m  varies from 2 for the acrylamide solution data to 3 for the 

peptide solution data. Furthermore, the growth of J  in the pre-gel and post-gel states 
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approach the power-law behavior given by n  in the limit of low lag time (
D

t ). Additionally, 

the viscous nature of the pre-gel state is also demonstrated by the model prediction by a linear 

increase in J  with 
D

t . This agreement between experimental data and the proposed model 

for a variety of gel-forming polymers probed using different viscometric functions and with 

different mechanism of gelation confirms the general nature of the proposed model and hints 

at its possible universality. 

Unlike the clay dispersion and PVOH solution systems reported in Figures 3 and 7, 

the superposition of the experimental mean-squared displacement for the acrylamide solution 

and peptide solution used arbitrary shifts. From a practical standpoint, this makes the 

reference states slightly ambiguous, and the fitting problem insufficiently constrained. This 

leads to different choices of fitting parameters that end up describing the data equally well. If 

hyperscaling laws, such as those shown in Figure 2 for the clay dispersion undergoing 

gelation at 10°C or similar, are established, this uncertainty can be easily resolved. For now, 

the ability of the phenomenological model to account for the experimental data in Figure 8 

demonstrates its flexibility. It is advisable not to over-interpret the corresponding best-fit 

parameters reported in Table 2 for these systems, with the reassurance that the uncertainty in 

these parameters can be removed by specifying the experimental data more fully. 

The proposed model of G  in this work, therefore, leads to the determination of 

various other viscoelastic properties namely * , H  and J . Furthermore, the proposed form 

of G  in the post-gel state leads to an excellent prediction of the experiment results. This is 

the first work to obtain the relaxation time spectrum for a gel-forming system at various 

extent of gelation. Furthermore, the developed model is independent of various factors 

affecting the gel transition such as temperature. Moreover, the proposed model is validated 

not only by a colloidal dispersion but is also found to be consistent with polymeric gels, thus 

highlighting the universality of the proposed model and method. The model parameters can 

be derived from a simple oscillatory experiment or constant stress experiment. Therefore, our 

work indicates that a simple model is sufficient to describe the complex rheological response 

of a gel-forming material. 

The sol-gel transition has been observed to take place as a function of different 

variables such as temperature, the concentration of certain species, time, etc.3, 4, 14, 18, 19 The 

spontaneous time-dependent sol-gel transition has been observed in many gel-forming 

systems such as crosslinking polymeric materials, clay dispersions, PVOH solution, silica 
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suspension, etc. Among these, when the crosslinking process is due to physical interactions, 

such as observed in the clay dispersion explored in this work, the spontaneous gelation 

process increases viscosity as a function of time while the system undergoes a decrease in 

viscosity under application of sufficiently strong deformation field. In clay dispersions, such 

a decrease in viscosity is due to the obliteration of interparticle bonds. Particularly in clay 

dispersions, after cessation of the deformation field, the particles start forming bonds again 

causing a rise in viscosity, although the system may not pass through the critical gel state.20 

This behavior, wherein a system shows a spontaneous increase in viscosity as a function of 

time under quiescent conditions and decrease in the same under application of the 

deformation field, suggests such systems have a thixotropic character. In addition, the post-

gel structure of these systems, particularly the clay dispersion, continue to evolve over 

several months.57 For the clay dispersion, the corresponding evolution of the properties as a 

function of time, well beyond the critical state, has been routinely termed as physical aging.58 

It would, therefore, be interesting to study over what timescale in the post-gel state the 

proposed phenomenological model is applicable. 

Although we present a simple phenomenological model, which works well for 

different kinds of gel-forming systems, there are a few interesting observations that can be 

explored in future. Based on the different gel-forming systems investigated in the literature 

and this work, the value of   is narrowly bounded between 0.17-0.28. However, the physical 

significance behind   adopting a value in the limited range for different gel-forming systems 

irrespective of the mechanism of gelation, the route to gelation and temperature is still an 

open question. Furthermore, although the longest relaxation timescale varies symmetrically 

on either side of the gel state, it is interesting to note that the relaxation time spectrum does 

not exhibit such symmetry. These aspects deserve more theoretical and experimental 

investigations, which shall render further insight into this fascinating phenomenon of sol-gel 

transition. 

 

7. Conclusions 

 

The primary goal of this work is to establish a comprehensive phenomenological 

model for the linear viscoelasticity of systems undergoing a sol-gel transition. It builds on 

previous work by Scanlan and Winter,23 which reported expressions for the relaxation 

modulus in the pre-gel state by augmenting the ( )G t  corresponding to the critical gel state 
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with a stretched exponential. Attempts to exploit the symmetry between sol and gel states 

sought to extend this framework to post-gels by retaining the stretched exponential form but 

switching the sign of the prefactor. While this could successfully describe the short-time 

viscoelasticity of systems close to the critical gel state, it led to an unphysical ( )G t  that was 

unbounded at long times. 

 In light of these observations, we proposed a further modification that systematically 

truncated the Taylor series corresponding to the stretched exponential form proposed by 

Scanlan and Winter23 after m  ~ 1 to 3 terms so that the expression for ( )G t  is well-behaved. 

When this is appended to prior expressions for the ( )G t  of the pre-gel and critical gel states, 

we obtain a comprehensive 6-parameter phenomenological model for systems undergoing 

sol-gel transition. We articulated expressions and numerical methods to transform this 

relaxation modulus to obtain the relaxation time spectra, the frequency response, and the 

creep compliance. We validated this model on five gel-forming systems that included 

hectorite clay dispersions, PVOH, acrylamide and peptide solutions. This strongly hints at the 

potential universality of this model. 

 Hyperscaling laws for 0 , 
e

G , max,S  and max,G  as a function of the extent of gelation 

greatly aided the process of calibrating the phenomenological model. They lead to a unique 

superposition of the experimental data, while simultaneously expanding its range to several 

decades of timescales. After reference states are chosen for the pre-gel and post-gel states, 

this typically leaves only two of the six parameters unspecified. These can be numerically 

fitted to the superposed data to extract the remaining unknown parameters. The model further 

expands the reach of experimental characterization, allowing us to make predictions of 

material behaviour at very short and long timescales that may be inaccessible experimentally. 

Perhaps, the most attractive feature of a well-calibrated phenomenological model is that it 

allows us to fully characterize any viscoelastic response of the material at any point in the 

sol-gel transition. 
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Appendix B: Best-fit Phenomenological Model Parameters 

 

We fit the parameters of the phenomenological model for five different systems. The values 

of the best-fit parameters are listed in Table 2. The curves corresponding to these fitting 

parameters are reported in Figures 3, 7, and 8. In addition to the six model parameters, m  = 

floor( n  ) is also shown. For the first three systems, the unique superposition of the complex 

viscosity shown in Figures 3 and 7 was obtained using the method described in the text and 

Ref 19. The extent of gelation in the reference state for the sol corresponded to max, 1
S

 = . The 

same extent of gelation was used in the reference state for the post-gel state. This effectively 

fixed all the parameters, except 
S

  and 
G

 , which are shown in the last two columns. 

 

Table 2: The parameters of the phenomenological model used to fit superposed experimental 

data. The curves corresponding to these fitting parameters are reported in Figures 3, 7, and 8. 

System 
[source of the data] 

S

Pa.sn    

n    m  
e

G  

[Pa] 
G



1 s
    

S


1 s
    

Aq. Clay dispersion 
10°C 
[This work] 

3.80 0.35 0.19 1 9.14 0.2 2.1 

Aq. Clay dispersion 
30°C 
[Ref 19] 

4.35 0.29 0.17 1 5.38 1.2 2.4 

Aq. PVOH solution 
[Ref 19] 

0.54 0.79 0.20 3 8.00 1.4 0.9 

Aq. Acrylamide 
solution 
[Ref 35] 

0.14 0.58 0.28 2 30.0 20 17 

Aq. Peptide 
Solution with bis-
acrylamide 
crosslinker 
[Ref 35] 

0.03 0.60 0.20 3 0.01 2.8 9.0 

 

For the aqueous acrylamide solution and aqueous peptide solutions, arbitrary shift factors 

were used to obtain the superposition of the mean-squared displacement in the original 
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dataset (Ref 35). Since hyper-scaling laws and reference states are not clearly established 

(unlike the first three datasets reported in Table 2) the fitting problem is insufficiently 

constrained. This is particularly true for the post-gel response where different combinations 

of 
e

G  and 
G

  can describe the data equally well. 
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